In Teacher We Trust: Deep Network Compression for Pedestrian Detection

نویسندگان

  • Jonathan Shen
  • Noranart Vesdapunt
  • Vishnu N. Boddeti
  • Kris M. Kitani
چکیده

Deep convolutional neural networks continue to advance the state-of-the-art in many domains as they grow bigger and more complex. It has been observed that many of the parameters of a large network are redundant, allowing for the possibility of learning a smaller network that mimics the outputs of the large network through a process called Knowledge Distillation. We show, however, that standard Knowledge Distillation is not effective for learning small models for the task of pedestrian detection. To improve this process, we introduce a higher-dimensional hint layer to increase information flow. We also estimate the uncertainty in the outputs of the large network and propose a loss function to incorporate this uncertainty. Finally, we attempt to boost the complexity of the small network without increasing its size by using as input hand-designed features that have been demonstrated to be effective for pedestrian detection. For only a 2.8% increase in miss rate, we have succeeded in training a student network that is 8 times faster and 21 times smaller than the teacher network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Teacher We Trust: Learning Compressed Models for Pedestrian Detection

Deep convolutional neural networks continue to advance the state-of-the-art in many domains as they grow bigger and more complex. It has been observed that many of the parameters of a large network are redundant, allowing for the possibility of learning a smaller network that mimics the outputs of the large network through a process called Knowledge Distillation. We show, however, that standard...

متن کامل

Pedestrian Detection in Infrared Outdoor Images Based on Atmospheric Situation Estimation

Observation in absolute darkness and daytime under every atmospheric situation is one of the advantages of thermal imaging systems. In spite of increasing trend of using these systems, there are still lots of difficulties in analysing thermal images due to the variable features of pedestrians and atmospheric situations. In this paper an efficient method is proposed for detecting pedestrians in ...

متن کامل

Deep Convolutional Neural Networks for pedestrian detection

Pedestrian detection is a popular research topic due to its paramount importance for a number of applications, especially in the fields of automotive, surveillance and robotics. Despite the significant improvements, pedestrian detection is still an open challenge that calls for more and more accurate algorithms. In the last few years, deep learning and in particular convolutional neural network...

متن کامل

Fusion of Multispectral Data Through Illumination-aware Deep Neural Networks for Pedestrian Detection

Multispectral pedestrian detection has received extensive attention in recent years as a promising solution to facilitate robust human target detection for around-the-clock applications (e.g. security surveillance and autonomous driving). In this paper, we demonstrate illumination information encoded in multispectral images can be utilized to significantly boost performance of pedestrian detect...

متن کامل

Improving the performance of pedestrian detectors using convolutional learning

We present new achievements on the use of deep convolutional neural networks (CNN) in the problem of pedestrian detection (PD). In this paper, we aim to address the following questions: (i) Given non-deep state-of-the-art pedestrian detectors (e.g. ACF, LDCF), is it possible to improve their top performances ?; (ii) is it possible to apply a pre-trained deep model to these detectors to boost th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017